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KEY POINTS

� Trauma-induced coagulopathy (TIC) is an endogenous hypocoagulable state distinct from
iatrogenic causes.

� Activation of protein C pathway is a key mechanistic mediator of traumatic coagulopathy
via downstream effects, including thrombin diversion, deactivation of coagulation factors,
and de-repression of fibrinolysis.

� Standard coagulation tests and functional viscoelastic assays are commonly used in the
diagnosis and management of TIC.

� Balanced resuscitation is the mainstay of coagulopathy treatment, but precise ratios for
empiric resuscitation and optimal monitoring protocols for transfusion practice remain
unknown.

� Patients with traumatic coagulopathy have worse outcomes, including increased rates of
transfusion, infection, thromboembolism, acute lung injury, multiorgan failure, and death.
INTRODUCTION

Bleeding remains the leading cause of preventable death after injury.1 Contributing to
this problem, coagulopathy develops in approximately one-third of all injured pa-
tients,2–4 resulting in worsened outcomes including higher transfusion requirements;
increased multiorgan system failure, increased hospital, intensive care, and ventilator
days; and increased mortality.2,3,5,6
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History of coagulopathy in trauma

Although coagulopathy was known to occur after injury, until recently coagulation was not
viewed as a critical driver of postinjury physiology. Instead, injured patients were thought to
be coagulopathic owing only to the iatrogenic secondary effects of hemodilution, hypother-
mia, and acidosis.7,8 In 2003, 2 independent investigators described admission perturbations
of prothrombin time (PT) and partial thromboplastin time (PTT) in newly injured patients
before significant fluid administration.2,3 This phenomenon, which correlated with increasing
injury severity and mortality, became known as “acute traumatic coagulopathy” (now
“trauma-induced coagulopathy” [TIC]) and effectively changed the paradigm of modern
trauma care.2,3,9 The study of coagulation and inflammation derangements after injury now
constitutes one of the most active areas of ongoing trauma research.
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This review addresses the current evidence regarding the diagnosis, mechanisms,
and management of TIC, highlighting areas of ongoing debate and controversy.
Although TIC is emphasized, it is equally important to recognize that coagulopathy after
trauma is often caused or compounded by additional contributors of disordered coag-
ulation including hypothermia, acidosis, dilution with large volume of intravenous fluid,
or unbalanced blood product, all of which are termed iatrogenic coagulopathy. Man-
agement of the injured coagulopathic patient must therefore include a high suspicion
for and treatment of multiple different potential etiologies of dysfunctional clotting.

PATIENT EVALUATION AND OVERVIEW
Mechanism and Pathophysiology

Multiple distinct but highly integrated pathways have been implicated as mediators of
TIC (Fig. 1). Delineating the exact pathophysiology and interplay between disordered
coagulation and inflammation mechanisms remains the subject of ongoing research.
Herein, we describe the most important known contributors to TIC.

Activated protein C and fibrinolysis
TIC is an endogenous hypocoagulable state that occurs in the setting of tissue hypo-
perfusion (base deficit) and is primarily mediated by activation of protein C (Fig. 2).10
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Fig. 1. Pathophysiology of traumatic coagulopathy. Multiple distinct but highly integrated
pathways have been implicated as mediators of trauma-induced coagulopathy. Delineation
and integration of these pathways remains an area of ongoing research.
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Fig. 2. Critical role of aPC in the pathophysiology of trauma-induced coagulopathy. Severe
injury accompanied by tissue hypoperfusion leads to increased endothelial and circulating
thrombomodulin, which subsequently binds thrombin. The resultant thrombomodulin-
thrombin complex converts protein C into its activated form (aPC). While aPC decreases
clot formation via deactivation of factors V and VIII, it is simultaneously consuming plasmin-
ogen activator inhibitor-1 (PAI-1), disinhibiting tPA, and leading to unopposed fibrinolysis.
APC, activated protein C; PAI, plasminogen activator inhibitor; tPA, tissue plasminogen acti-
vator; Va, activated factor V; VIIIa, activated factor VIII.
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Multiple prospective clinical studies have linked early coagulopathy in critically injured
trauma patients to protein C depletion (activated protein C [aPC] elevation), and
increased risk of acute lung injury, ventilator-associated pneumonia, multisystem or-
gan failure, and death.6,10,11 Protein C is a serine protease with both anticoagulant and
inflammomodulatory functions.12,13 When severe injury is accompanied by shock (tis-
sue hypoperfusion), increased endothelial and circulating thrombomodulin bind
thrombin forming thrombomodulin–thrombin complex, which subsequently activates
protein C.10 aPC deactivates factors V and VIII inhibiting clot formation, and depletes
plasminogen activator inhibitor-1, leading to unopposed fibrinolysis with increased
levels of tissue plasminogen activator and D-dimer.14

Fibrinolytic activity is further exacerbated by reduced activation of thrombin-
activatable fibrinolysis inhibitor as thrombin is diverted to PC activation.15 Severe fibri-
nolysis in TIC portends increased mortality,16–18 and even low degrees of clot lysis
have been associated with poor outcomes.19 In a murine model, aPC inhibition pre-
vented TIC after trauma and hemorrhagic shock.12

Conversely, overinhibition of fibrinolysis, termed “fibrinolysis shutdown,” has been
demonstrated tobean independent predictor of adverseoutcomesafter injury, including
increased mortality.20 Furthermore, recent prospective cohort data suggest that more
severely injured patients present with fibrinolysis shutdown than either hyperfibrinolysis
or physiologic fibrinolysis.21 These data have important implications with regard to the
usefulness of potential fibrinolytic inhibitors, which will need to be carefully targeted to
the physiologic range and avoid overinhibition leading to fibrinolysis shutdown.

Platelets
Platelet deficit and dysfunction are also likely to be significant contributors to TIC.22
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Relative thrombocytopenia Multiple prospective cohort studies have demonstrated
that relatively lower admission platelet counts are associated with increased all-
cause, hemorrhagic, and central nervous system mortality, and increased blood use
after injury, even when the initial platelet count remains well within the normal
limits.23,24 Additionally, the platelet count has been shown to decrease substantially
over the course of hospitalization.

Functional platelet impairment Severe injury is also associated with impaired platelet
function. In 2001, Jacoby and colleagues25 used flow cytometery and light aggregr-
ometry first identified decreased admission platelet function in injury nonsurvivors,
and, in a separate analysis, in patients with head injury at 24 hours. Thromboelasto-
graphic platelet mapping data demonstrated that severely injured trauma patients
had impaired platelet stimulation in response to adenosine diphosphate and arachi-
donic acid stimulation compared with healthy human volunteers, with impairment pro-
portionate to injury severity.26

Another prospective clinical study demonstrated that 46% of severely injured pa-
tients on admission and 91% of patients at 120 hours had some degree of platelet
dysfunction by multiplate impedance aggregometry, despite normal platelet counts.27

Impaired admission platelet function in response to arachidonic acid, collagen, and
thrombin receptor activating peptide were predictive of death. Data from multiple
additional animal and clinical studies have corroborated findings of impaired platelet
function after severe injury and traumatic brain injury.28,29

Endothelial involvement
Recent investigations have also demonstrated evidence that endothelial dysfunction
likely plays a role in development of TIC.30 Admission plasma samples from severely
injured patients demonstrate elevated circulating levels of Syndecan-1, a protein nor-
mally found in the glycocalyx of the endothelium. Soluble syndecan-1 was associated
with increased aPC, prolonged PTT, and increased adrenaline levels, suggesting that
tissue hypoperfusion and catecholamine stimulation after injury may result in degrada-
tion of the endothelial glycocalyx and contribute to coagulopathy. To date, however,
there is no experimental confirmation of this theory, making it possible that the asso-
ciation between catecholamines and coagulopathy is only correlative.

Microparticles
Emerging research suggests thatmicroparticlesmayalsoplaya role in themechanismof
TIC. Some evidence suggests that systemic release of thrombin-rich microparticles,
which likely function normally in local hemostasis after tissue injury,may cause a coagu-
lopathic state similar to DIC. Elevated circulating endothelial-, erythrocyte-, and
leukocyte-derived microparticles have been identified in the plasma of injured patients
comparedwithnoninjuredcontrolswhereascoagulopathicpatientsdemonstrated lower
levels of platelet-derived and tissue factor–positive microparticles compared with non-
coagulopathic patients.31 In a single small study, increased circulating microparticles
were also found in patients with traumatic brain injury compared with controls.32

Diagnosis
Standard clinical and laboratory assessment after severe injury

As with the management of all severely injured patients, diagnosis of TIC should be performed
within the context of the Advanced Trauma Life Support evaluation. Obvious sources of active
bleeding should be temporized promptly with compression or other hemostatic measures,
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hypotension should be addressed with administration of packed red blood cells (PRBC), and the
patient should be warmed with heated blankets as the patient is exposed. Severe injury and
hypotension should prompt a high degree of suspicion for traumatic coagulopathy. Standard
trauma laboratory tests should be obtained as soon as intravenous access is secured and can
provide indicators of the presence of tissue hypoperfusion and coagulopathy. Table 1 describes
standard admission trauma laboratory tests and their role in the diagnosis of TIC.

Table 1
Standard admission trauma laboratory measures in the evaluation of TIC

Lab Level Usefulness in the Diagnosis of TIC

pH Low Significant hypoperfusion probable

Base deficit/excess Negative Significant hypoperfusion probable

Hemoglobin/hematocrit Low Likely significant blood loss

Platelet count Low Absolute/relative thrombocytopenia

Partial thromboplastin time Prolonged Diagnostic of TIC

Prothrombin time/International
Normalized Ratio

Prolonged Diagnostic of TIC

Abbreviation: TIC, trauma-induced coagulopathy.
We also recommend the standard collection of baseline fibrinogen and D-dimer, which can pro-

vide a surrogate estimation of factor consumption and fibrinolysis, respectively.
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Diagnostic criteria
Multiple assays currently play a role in the diagnosis of TIC.

Standard assays TIC was initially defined by prolongation of the standard coagulation
assays PTT and PT/International Normalized Ratio (INR), and these remain the most
widely used method for the diagnosis of TIC. Different cutoffs for these assays have
been described in the literature (Table 2).
Macleod and colleagues3 reported that alterations in the cutoffs for PTT and PT did

not alter the predictive value of these variables for predicting death in an adjusted
regression model. Lower thresholds for INR cutoffs demonstrated improved sensitivity
to discriminate patients with higher transfusion requirements in shock in severely
injured population (Injury Severity Score >15) in a multicenter retrospective study,
but at least 1 prospective study has refuted this finding.36

However, concerns have been raised regarding the use of standard coagulation as-
says as the benchmark for TIC. PTT and INR were designed initially to test heritable
coagulopathy, and standard reference ranges were generated using data from healthy
volunteers. Additionally, concerns have been raised regarding the length of time
required to run standard coagulation tests when rapid and ongoing diagnosis and
treatment of the coagulopathic patient are essential to reverse pathophysiology and
improve outcomes.
Table 2
Commonly used cutoffs for conventional coagulation assays in trauma-induced coagulopathy

Assay Cutoff Or Any value >1.5� the institutional
reference range33Partial thromboplastin time >34–60 sec3,30

Prothrombin time >18 sec
International Normalized Ratio >1.2–1.53,6,34,35
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Viscoelastic assays There has been increased interest and use of point-of-care func-
tional tests such as thromboelastography (TEG) and rotational thromboelastometry
(ROTEM) for the diagnosis and management of patients with TIC. TEG is a modality
that assesses multiple real-time viscoelastic properties of coagulation including:

� Time to clot initiation,
� Clot propagation,
� Clot strength, and
� Clot breakdown (fibrinolysis).

The addition of specific clotting activators and inhibitors can be used to assay
different contributors to clot formation or breakdown. Multiple studies have demon-
strated the capacity of TEG to diagnose hypocoagulability and predict transfusion
and mortality in the trauma population.37–40 TEG has been validated against standard
coagulation tests,40 and assays of both thrombin generation41 and fibrinolysis.42 How-
ever, there remains ongoing debate regarding the superiority of TEG compared with
other assays, in particular with regards to fibrinolysis as plasmin–antiplasmin levels
have demonstrated high sensitivity.43

Scoring systems Multiple scoring systems have been generated to predict need for
massive transfusion, including:

� The Trauma-Associated Severe Hemorrhage score,44

� The McLaughlin score,45 and
� The Assessment of Blood Consumption score.46

A retrospective review comparing these 3 scoring systems failed to demonstrate a
difference between their capacity to predict massive transfusion.46 Importantly, the
scoring systems do not take into account coagulation parameters and likely reflect
significant hemorrhage owing to injury rather than TIC proper. None of these scoring
systems have been used widely in the diagnosis of TIC.
Phenotypes of Trauma-Induced Coagulopathy

There is evidence to suggest that traumatic coagulopathy is not a single entity, but rather con-
sists of multiple distinct but related pathophysiologic subtypes. A principle component analysis
of a large prospective cohort of injured patients demonstrated 2 such phenotypes.

1. Coagulation factor deficiency TIC
a. Characterized by abnormality of standard coagulation tests and increased mortality.

2. Fibrinolytic TIC
a. Characterized by aPC elevation and is associated with increased end organ failure,

infectious complications and mortality.9

There are likely even more TIC subtypes that have yet to be identified. By diagnosing and treat-
ing specific deficits underlying different coagulopathic phenotypes, it may be possible to
streamline individualized care and improved outcomes.
PHARMACOLOGIC TREATMENT OPTIONS

Although balanced product transfusion currently remains the mainstay of treatment for
TIC, there are several pharmacologic agents that have the potential to be efficacious
based on our mechanistic understanding of traumatic coagulopathy.
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Antifibrinolytics

Evidence of hyperfibrinolysis as a critical mechanism underlying traumatic coagulop-
athy has led to interest antifibrinolytic agents as potential adjuncts for the treatment of
TIC. These agents include tranexamic acid (TXA), aminocaproic acid, and aprotinin, of
which only TXA has been widely studied in trauma patients.
The CRASH-2 trial (Clinical Randomization of an Antifibrinolytic in Significant Hem-

orrhage) was a large international randomized trial that reported a 1.5% absolute mor-
tality reduction in patients administered TXA compared with placebo, although there
was no difference in blood product transfusion between groups. Furthermore, the
subset of patients who received TXA 3 or more hours after injury had increased mor-
tality.47 Of note, enrollment criteria for this study failed to incorporate coagulation data
and included any patients with or at risk for significant hemorrhage limiting the gener-
alizability of these findings.
The MATTERs (Military Application of Tranexamic-acid in Trauma Emergency

Resuscitation) study was a retrospective observational study, which identified
reduced mortality in patients who received TXA, with greater differences identified
in patients requiring massive transfusion.48 Despite achieving considerable accep-
tance as an adjunctive treatment for TIC, there has not yet been sufficient evidence
to support the routine use of TXA in the trauma setting.49

Recombinant Factor Concentrates

Additional pharmaceutical hemostatic agents with potential usefulness in the treat-
ment of TIC include recombinant factor concentrates including recombinant factor
VIIa, prothrombin complex concentrate (PCC), and fibrinogen.

Recombinant Factor VII

Fresh frozen plasma (FFP) is often used to reverse coagulopathy, but has limitations
including the requirement for thawing and cross-matching, incomplete and variable
factor level repletion,50–52 and coagulation test reversal53,54 and complications such
as transfusion-related acute lung injury and circulatory overload.55,56

Physiologically targeted resuscitation could theoretically arrest coagulopathy in a
rapid fashion and avoid many of the pitfalls of traditional plasma. There was significant
interest in using recombinant factor VIIa to do this; however, key trials failed to show
benefit and suggested increased thrombotic complications.57 It has been pointed out
that these trials generally used recombinant factor VIIa late in the resuscitation pro-
cess, when poor outcomes were relatively certain. It is not known whether recombi-
nant factor VIIa could potentially have a role in trauma resuscitation as part of a
more targeted empiric therapy for specific subpopulations of patients with TIC, but
at present factor VIIa has not gained widespread support for use in the trauma setting.

Prothrombin Complex Concentrate

PCC comes in several varieties, including 3- and 4-factor formulations. The most com-
mon formulation is 4-factor PPC, a human plasma–derived concentrate of vitamin K–
dependent clotting factors II, VII, IX, and X that received approval from the US Food
and Drug Administration in April 2013 as an alternative to urgent warfarin reversal in
the setting of acute bleeding or need for urgent surgery. Since that time, it has devel-
oped usage for reversal of nonwarfarin coagulopathy, including coagulopathy induced
by new oral anticoagulants and in coagulopathy of nonmedication etiologies.58–60

In a porcine trauma models, PCC demonstrated more rapid and effective hemosta-
sis than FFP in the correction of acquired coagulopathy.61 Multiple retrospective
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studies have reported decreased time to reversal, decreased product use, and
decreased mortality in patients treated with PCC in the setting of traumatic coagulop-
athy in general and in the population with traumatic brain injury.62,63 However, there
are ongoing concerns regarding the potential for increased thromboembolic compli-
cations and cost with 4-factor PPC compared with plasma. At present, the paucity
of prospective data limits our ability to draw conclusions regarding the safety and ef-
ficacy of 4-factor PPC in severe injury.

Fibrinogen Concentrate

Fibrinogen deficit has been shown to predict TIC,11 and as described fibrinolysis con-
stitutes an important component of the pathophysiology of TIC. In a prospective cohort
study of 517 trauma patients, low fibrinogen levels were independent predictor of mor-
tality at 24 hours and 28 days (P<.001), and administration of cryoprecipitate was asso-
ciated with improved survival.64 Although the threshold of sufficient fibrinogen to
support normal clotting has not been studied rigorously in trauma patients, routine
testing and repletion of low admission levels or function may be a reasonable adjunct
to the treatment of TIC. FFP does not contain sufficient amounts of fibrinogen for
adequate replacement65 and in the United States cryoprecipitate is commonly used
for this purpose. In Europe, retrospective studies in a trauma population have reported
good efficacy of fibrinogen concentrate in correcting functional deficits,66 however, this
product is not currently approved in the United States. Current European guidelines for
hemorrhage management in trauma patients with fibrinogen levels less than 1.5 to
2.0 g/L or viscoelastic signs of a functional fibrinogen deficit recommend an initial fibrin-
ogen concentrate dose of 3 to 4 g (equivalent to 15–20 single donor units of cryopre-
cipitate), with further dosing guided by laboratory or viscoelastic testing (Fig. 3).67

NONPHARMACOLOGIC TREATMENT OPTIONS

Treatment of coagulopathy in the injured patient includes early diagnosis, prompt he-
mostasis, and early hemorrhage control, prevention of complicating causes of coagul-
opathy (hypothermia, acidosis, hemodilution), and blood product transfusion with
FFP, platelets, and cryoprecipitate. There is ongoing debate regarding the optimal
protocol for delivery of blood product resuscitation.

Balanced Resuscitation and Resuscitation Ratios

Although early transfusion was conducted with whole blood, in the last quarter of the
21st century standard practice favored resuscitation of the injured patient with large
volumes of crystalloid and PRBC.68 Then, in the early 2000s, retrospective military
data from Afghanistan and Iraq suggested a mortality benefit to trauma resuscitation
with a balanced ratio of PRBCs.69 Civilian retrospective data echoed these findings
using a 1:1:1 ratio of PRBCs, FFP, and platelets70,71 and the trauma community sub-
sequently began to shift toward balanced blood product resuscitation (Fig. 4).
The PROMMTT study (Prospective, Observational, Multicenter, Major Trauma

Transfusion) demonstrated in a large multicenter cohort that patients who received
increased plasma to RBC ratios had reduced 6-hour mortality compared with those
who received less plasma.72 In an attempt to delineate the ideal empiric transfusion
ratio, the (PROPPR) trial (Pragmatic, Randomized Optimal Platelet and Plasma Ratios)
randomized severely injured patients to 1:1:1 versus 1:1:2 PRBC to FFP to platelet
resuscitation, but ultimately failed to demonstrate a difference between resuscitation
groups for 24-hour or 28-day mortality,73 which was likely at least in part owing to poor
separation between treatment groups. At present, the precise “ideal” PRBC to plasma
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Fig. 3. Recommendations of European Guideline onmanagement ofmajor bleeding and coa-
gulopathy after trauma, 2016. APA, antiplatelet agents; aPCC, activated prothrombin complex
concentrate; APTT, activated partial thromboplastin time; FFP, fresh frozen plasma; Hb, hemo-
globin; PCC, prothrombin complex concentrate; PT, prothrombin time; RBC, red blood cells;
rFVIIa, recombinant factor VIIa; TBI, traumatic brain injury; TXA, tranexamic acid. (Adapted
from Rossaint R, Bouillon B, Cerny V, et al. The European guideline on management of major
bleeding and coagulopathy following trauma: fourth edition. Crit Care 2016;20:100.)
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Fig. 4. Evolution of paradigms and resuscitation of injured patients over time. Early transfu-
sion was conducted with whole blood. In the 1970s, resuscitation practice shifted toward an
emphasis on perfusion with heavy use of large volumes of crystalloid and packed red blood
cells (PRBC). Coagulopathy was understood to occur in severely injured patients but was not
recognized as a distinct entity. Rather, it was attributed to iatrogenic dilution, hypothermia,
or acidosis. In 2003, trauma-induced coagulopathy was identified as a distinct entity and
treatment shifted away from crystalloid and toward balanced hemostatic resuscitation.
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to platelet ratio remains undetermined; however, it remains clear that limitation of crys-
talloid and balanced product transfusion approximating whole blood improve out-
comes and should be priorities of trauma resuscitation.

COMBINATION THERAPIES
Targeted Resuscitation Practice

A different paradigm for treatment of the patient with TIC proposes a targeted
approach to resuscitation. In this approach, laboratory assays, including point-of-
care TEG, are obtained in a serial fashion and used to guide product transfusion
and administration of pharmaceutical adjuncts. This allows resuscitation to be tailored
to the individual patient in real time, and coordinates the different modalities available
for treatment. An additional advantage to this approach is the ability to provide dy-
namic management as the patient’s condition changes. Objections to this approach
include the need for infrastructure to support serial and rapid TEG assays, and that
these tests depend on and vary by user skill and interpretation.
A recent Cochrane review suggested that there was insufficient evidence to recom-

mend TEG-based transfusion guidelines as superior to established transfusion prac-
tice.74 However, recently published prospective randomized data from the Denver
group shows a mortality benefit when viscoelastic functional testing (TEG) was used
to guide massive transfusion protocols compared with conventional coagulation as-
says (CCA).75 Survival in the TEG group was significantly higher than the CCA group
(28-day mortality 36.4% CCA vs 19.6% TEG) and 6-hour mortality was significantly
lower in the TEG group (21.7% CCA vs 7.1% TEG; P5 .032). Importantly, not all cen-
ters have access to TEG, and these centers should perform frequent serial measure-
ments of PT/INR, PTT, platelets, hemoglobin/hematocrit, fibrinogen, and D-dimer to
help guide resuscitation practice.

SURGICAL TREATMENT OPTIONS

Surgical management of trauma coagulopathy should be directed toward prompt
cessation of any anatomic causes of hemorrhage, and thereby avoidance of
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what has been termed the “lethal triad” of coagulopathy, hypothermia, and
acidosis.
TREATMENT RESISTANCE AND COMPLICATIONS
Compounding Coagulopathy

If prompt diagnosis and tailored resuscitation fails to improve TIC, compounding eti-
ologies of coagulopathy should be strongly suspected. These can include hypother-
mia, acidosis, hemodilution, DIC, and heritable coagulopathies. Treatment includes
the approaches described, as well as the following considerations.

Hypothermia
Hypothermia (temperature <36�C) is present in approximately two-thirds of injured pa-
tients on admission, and 9% of patients present with severe hypothermia
(temperature <33�C) owing to a combination of exposure in the field and during trans-
port and administration of cold intravenous fluids.76 Patients are at further risk for
worsening of hypothermia in the emergency room and operating room, if necessary.
Mild to moderate hypothermia (temperature 33�C–36�C) results in impaired platelet
aggregation and adhesion and decreased tissue factor activity leading to coagulop-
athy that is typically not detectable using standard or functional coagulations assays
as samples are routinely warmed before testing.77 Therefore, it is essential to maintain
a high level of vigilance against hypothermia with continuous temperature monitoring.
All trauma patients should receive passive rewarming with removal of clothing and
application warmed blankets, as well as warming of administered fluids. Central
warming should be considered in cases of severe or resistant hypothermia.

Acidosis
Severely injured patients frequently present with or develop acidosis during the course
of their resuscitation. Assembly of functional coagulation factor complexes are
inhibited in acidotic environments (pH <7.2) with increasing dysfunction as acidosis
worsens.78,79 Arterial blood gas should be obtained at admission and repeated at se-
rial time points throughout resuscitation with correction of acidosis as necessary.

Hemodilution
Dilutional coagulopathy, also known as “iatrogenic” or “resuscitation–associated coa-
gulopathy” occurs when coagulation factor proteins are diluted by large volumes of
crystalloid, colloid, or PRBCs. Coagulation factor dilution with large volume adminis-
tration has been demonstrated in multiple laboratory, modeling and healthy control
studies.80–82 Retrospective data have shown admission coagulopathy to be signifi-
cantly more prevalent among injured patients who received more than 3 L of prehospi-
tal fluids compared with those who received little (<500 mL) or no volume.4 To avoid
dilutional coagulopathy, resuscitation should consist primarily of balanced product
transfusion with frequent monitoring of ongoing coagulation status. Crystalloid should
no longer be considered a resuscitation fluid and only used to facilitate administration
of medications and blood products.

Disseminated intravascular coagulation
Disseminated intravascular coagulation (DIC) occurs as a result of systemic microvas-
cular thrombosis causing severe consumptive coagulopathy. Although now under-
stood to be a distinct pathology, some features of DIC overlap with traumatic
coagulopathy, making diagnosis challenging. Trauma patient are at increased risk
for DIC owing to the potential for embolization of tissue-specific thromboplastin after
long bone fractures, amniotic disruption, or brain injury, or later in the clinical course as
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a result of sepsis. DIC should be considered as an alternate or concomitant etiology of
late, recurrent, or treatment-resistant coagulopathy in the severely injured patient, but
is not a cause of acute traumatic coagulopathy.

EVALUATION OF OUTCOME AND LONG-TERM RECOMMENDATIONS

Outcomes after treatment of TIC should be assessed by:

1. Improvement in the clinical condition of the injured patient including a trend toward
global hemostasis and hemodynamic stability and

2. Reversal of standard and functional laboratory coagulation abnormalities.

Despite advances in the understanding, diagnosis, and resuscitation of injured pa-
tients with TIC, patients with traumatic coagulopathy go on to have worse outcomes
than noncoagulopathic patients.

Transfusion Requirements

Compared with noncoagulopathic patients, patients with TIC receive substantially
increased blood product transfusion,10 which independently confers a greater risk
of complications such as acute respiratory distress syndrome,83 systemic inflamma-
tory response syndrome,84 and mortality after injury.85 As noted, there is no
consensus regarding ideal ratios of resuscitation; however, ongoing observational
experience from institutions with massive transfusion protocols have described
decreased crystalloid and overall product use, and lower PRBC:FFP ratios with
concomitant survival benefit.86

Hypercoagulability

Multiple investigators have reported an increased incidence of thromboembolic com-
plications in patients with early TIC.36,87 Given the potential risks of anticoagulation in
this patient population, multiple scoring systems including the Trauma Embolic
Scoring System and the Risk Assessment Profile have attempted to stratify patients
at high risk for venous thromboembolism (VTE), but recent retrospective data suggest
that scoring systems often fail to discriminate between patients who go on to develop
VTE.88 It also remains unclear whether standard or functional assays can accurately
predict clinically significant hypercoagulability in critically ill trauma patients.89 Many
studies investigating VTE in trauma patients relay on duplex screening, and the signif-
icance of these incidentally discovered events remains unknown. Finally, there has not
been sufficient evidence to definitively establish whether standard chemoprophylaxis
is efficacious in mitigating thromboembolic risk in this population.90 Further prospec-
tive clinical studies are necessary to better delineate the mechanism of VTE in previ-
ously coagulopathic trauma patients and to identify potential targets for prevention
and treatment.

Acute Lung Injury, Multiorgan Failure, and Death

Despite substantive progress in delineation of the mechanism of TIC and improved
outcomes resulting from changes in resuscitation practice, patients with traumatic
coagulopathy have vastly increased rates of acute lung injury, multiorgan failure,
and death. Unsurprisingly, these patients also have worse hospital metrics, including
more days spent on the ventilator, in the intensive care unit, and in the hospital than do
noncoagulopathic patients. This highlights the need for continued research efforts and
clinical innovation to combat this considerable clinical challenge and improve out-
comes. One potential approach is through focus on individualization of diagnosis
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and resuscitation. As discussed, there is evidence to suggest that traumatic coagul-
opathy is not a single entity, but rather consists of multiple phenotypes with unique im-
plications for outcomes and management.

SUMMARY

� TIC is an endogenous hypocoagulable state distinct from iatrogenic, dilution, or
hypothermic causes.

� Activation of the protein C pathway is a key mechanistic mediator of TIC via mul-
tiple downstream effects including thrombin diversion, deactivation of coagula-
tion factors, and de-repression of fibrinolysis.

� Standard coagulation tests and functional viscoelastic assays are commonly
used in the diagnosis and management of TIC.

� Balanced resuscitation is the mainstay of TIC treatment, but precise ratios for
empiric resuscitation and optimal monitoring protocols for transfusion practice
remain hotly debated.

� Patients with TIC have worse outcomes including increased rates of transfusion,
infection, thromboembolism, acute lung injury, multiorgan failure, and death.
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